11 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Схема импульсного зарядного устройства

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.

Импульсное зарядное устройство_схема_описание

Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.

Принципиальная схема зарядного устройства изображена на следующем рисунке:

Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.

Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 – ограничители токов баз Т1 и Т2 соответственно.

Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.

Лампа HL1 – визуальный контроль работы зарядного устройства.
На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.

Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.

Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:

● Обмотка III – 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.

● Обмотки I, II, IV – по 2 витка каждая, можно использовать жилы от телефонного кабеля.

● Обмотки V, VI – по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.

В результате должно получиться примерно так:

Импульсный трансформатор для зарядного устройства

Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
Транзисторы Т3 и Т4 – биполярные, 2SC1815. Можно заменить на КТ315.
Транзистор T5 – полевой, типа N302AP, тоже можно установить на небольшой радиатор.
Диодный мост D1 – KBP208G, или аналогичный на ток 10 Ампер.
Диоды D2 и D3 – 1N4007, можно заменить на отечественные КД226Д.
Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 – типа МЛТ-0,25.
Резисторы R2, R3, R6 – типа МЛТ-0,5.
Конденсаторы С1 и С2 – 33 мкФ, на напряжение не ниже 250 Вольт.
Конденсатор С3 – 2200 пФ на 400 Вольт.

Ниже на снимках показан внешний вид печатной платы:

Печатная плата зарядного устройства

Печатная плата зарядного устройства_сторона элементов

. Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива – 0,045 Mb.

Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):

Плата импульсного ЗУ_вид со стороны элементов

Плата импульсного ЗУ_вид со стороны дорожек

Импульсное зарядное устройство в сборе

. Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.

Импульсная зарядка для li-ion аккумуляторов

Всем нам уже все уши прожужжали, что литий-ионные аккумуляторы правильнее всего заряжать постоянным током до напряжения 4.2 В. По достижении данного значения считается, что аккумулятор набрал где-то 70-80% своей максимальной емкости. К слову сказать, этот момент наступает достаточно быстро и чем больше был ток заряда, тем быстрее.

Теперь остается зафиксировать на аккумуляторе это напряжение и подержать его так еще какое-то время. За это время аккумулятор должен набрать еще процентов 20 емкости. Ток заряда при этом будет неуклонно снижаться но, что немаловажно, до нуля так никогда и не дойдет. Окончанием заряда можно считать снижение тока до

0.05 от номинальной емкости (той, которая указана на этикетке).

Описанная логика по своей сути очень правильная и в первом приближении не имеет недостатков: быстрый набор основной емкости, четко заданные критерии перехода к фазе снижения тока и момента окончания зарядки. Но так ли это?

Читать еще:  Срок техосмотра для новых машин

На самом деле, для описанной выше логике работы зарядных устройств порог в 4.2 вольта выбран далеко не случайно. Дело в том, что длительное прикладывание повышенного напряжение к li-ion аккумуляторам ведет к деградации их электродов и электродных масс (электролита) и, как следствие, потери емкости. А так как фаза заряда с фиксированным напряжением и падающим током обычно довольно длительная, то желательно ограничить напряжение сверху на уровне 4.2 (или 4.24В). Что и делается на практике.

Однако, более правильным было бы контролировать напряжение на аккумуляторе не тогда, когда через него протекает большой зарядный ток, а во время холостого хода. Дело в том, что в зависимости от величины внутреннего сопротивления батареи и тока, напряжение на аккумуляторе может запросто достигать 4.3 и даже 4.4 Вольта (если, конечно, нет PCB-модуля, который отрубит акб из-за перенапряжения). Таким образом, зарядное устройство перейдет в режим стабилизации напряжения немного раньше, чем хотелось бы, увеличивая тем самым общее время заряда.

Заряд импульсами тока с паузами между ними

Умная зарядка дейстовала бы следующим образом: сначала отключила бы зарядный ток, выждала бы небольшую паузу, измерила бы напряжение холостого хода на аккумуляторе и на основании этого приняла бы решение о своих дальнейших действиях. Чем ближе напряжение приблизилось к 4.15В (это напряжение полностью заряженного аккумулятора), тем более короткий импульс зарядного тока выдает зарядка. Как только напряжение достигнет заданного порога (4.15 вольта), импульсы тока совсем прекратятся.

Вот как это выглядит на графике:

В таком зарядном устройстве можно оставлять аккумулятор на сколь угодно длительное время, и он будет подзаряжаться по мере необходимости.

Мы только что описали еще один (более правильный) способ зарядки литиевых аккумуляторов – импульсный. Но такие зарядки менее распространены, так как для реализации этого алгоритма требуется микропроцессорное управление, что усложняет и удорожает схему.

Схема зарядника

Но не надо грустить! Оказывается, существует схема импульсного зарядного устройства для литий-ионных аккумуляторов БЕЗ МИКРОПРОЦЕССОРА. Вот она:

Как это ни удивительно эта несложная схема в полной мере реализует весь описанный выше алгоритм заряда при полном отсутствии “мозгов”. Схема работает следующим образом.

С момент включения схема начинает заряжать аккумулятор постоянным током. Величина тока зависит от напряжения питания и сопротивления резистора RD.

В момент, когда напряжение на элементе при наличие зарядного тока начинает превышать 4,15 Вольта, компаратор (KA393 или KIA70XX) видит это и закрывает транзистор VT1. Далее следует пауза, за время которой напряжение на элементе снижается до своего истинного значения. Т.к. напряжение холостого хода на аккумуляторе ещё не достигло величины 4,15 В, оно вскоре упадет ниже этого значения. Компаратор, увидив это, вновь откроет зарядный ключ.

Процесс будет повторяться снова и снова, с той лишь разницей, что по мере зарядки аккумулятора импульсы зарядного тока будут всё время сокращаться, а длительность паузы между импульсами, наоборот, увеличиваться. То есть будет увеличиваться скважность импульсов.

Ближе к концу зарядки длительность импульса зарядного тока составляет доли процента от длительности паузы между ними, а напряжение на элементе будет практически равно 4,15 Вольта (конкретное значение выставляется потенциометром R1 при настройке схемы).

Теперь о деталях. Разумеется, можно использовать обычный трансформатор без средней точки. Прекрасно можно обойтись и однополупериодным выпрямителем. А еще проще взять в качестве питания какой-нибудь уже готовый 5-вольтовый зарядник от сотового телефона. Чтобы его не спалить возможно придется еще сильнее ограничить ток заряда, увеличив RD, например, до 0.47 Ом.

Транзисторы что-то типа KTA1273. Силовой полевик указан на схеме, но еще лучше взять PHB108NQ03LT (выпаять из старой материнской платы от компа).

Подстроечник 470 Ом. И не самых маленьких размеров, т.к. он все-таки должен рассеивать какую-то мощность. Брать более 470 ом не советую, т.к. это увеличивает гистерезис срабатывания микросхемы KIA (микросхема может просто вырубить зарядку вместо того, чтобы генерировать импульсы, как задумано).

Схемы можно объединять в последовательные цепочки. Это позволяет заряжать батареи из последовательно соединенных аккумуляторов.

Схему можно значительно упростить, выкинув необязательные цепи, а также заменив полевик на обычный биполярный транзистор. Вот, например, парочка вполне рабочих вариантов:

Транзистор можно заменить на наш дубовый КТ837. Питания лучше не делать больше 6 вольт, т.к. чем оно выше, тем сильнее все будет греться. Резистором R1 при сильно разряженном аккумуляторе нужно ограничить ток на уровне 700-800 мА, этого будет вполне достаточно для одного элемента li-ion. При подборе резистора главное не превысить максимальную мощность силового транзистора и способности источника питания.

Если не получилось найти микросхемы KIA70хх, их можно заменить другими детекторами напряжения, например, BD4730. Вот вариант зарядки с этой микросхемой:

Для того, чтобы настроить схему, необходимо отловить момент, когда напряжение на аккумуляторе станет ровно 4.2В и в этот момент выставить на 5-ом выводе микросхемы напряжение 2.99 Вольта (при помощи резистора R6). Если есть регулируемый блок питания, можно выставить на нем ровно 4.2 Вольта и на время настройки подключить его вместо аккумулятора.

Любая из этих схем позволяет заряжать литиевые аккумуляторы любых типоразмеров и емкостей (с учетом коррекции зарядного тока) – от небольших элементов в призматических корпусах до циллиндрических 18650 или гигантских 42120.

Поделки своими руками для автолюбителей

Импульсное зарядное устройство для авто, схема, описание

К вашему вниманию простая схема импульсного ЗУ для автомобильного акб, компактная, проверенная в работе и со всеми защитами.

Читать еще:  Устройство для чистки цепи

Электронный трансформатор немного дорабатываем, чтобы в конечном итоге выход был 14 вольт, то есть если нет 14 вольт, то нужно немного домотать вторичную обмотку. Затем мы добавим (тут по желанию) сетевой фильтр. Сделаем обязательно диодный выпрямитель и схемы защиты от короткого замыкания, переполюсовки и перегрузки. Ну и добавим индикацию.

Я взял китайский электронный трансформатор на 80 ватт. Частота задаётся динистором DB3 в районе 30 кГц. Имеется 2 трансформатора, один ОС, второй (основной) понижающий.

3 обмотки содержит тран-тор ОС, две базовые обмотки ключей и саму обмотку ОС. Были взяты ключи MJE 13005.

Чтобы использовать наше зарядное устройство можно было ещё и в качестве БП, реализуем включение без нагрузки.

Итак, что для этого надо….

1) Выпаять обмотку ОС и вместо неё сделать перемычку.
2) Мотаем 2 витка проводом 0.4 мм на основном трансе и подключаем всё это дело как показано на схеме ниже. Это делать не обязательно, если данное устройство будет работать только как зарядное для аккумуляторов.

Резистор нужно взять мощностью 5-10 ватт и то он всегда будет тёплый, но это нормально.

Такая переделка даёт нам защиту от короткого замыкания и включение системы без нагрузки. Но всё равно при длительном замыкании (больше 10 сек) ключи могут выйти из строя, поэтому мы будем делать отдельную защиту от короткого замыкания.

Сделаем на отдельной плате.

В схеме использован транзистор IRFZ44, можно взять и помощней IRF3205. Ключи можно использовать на ток более 20 ампер, такие как IRFZ24, IRFZ40, IRFZ46, IRFZ48 и т.д. Теплоотвод для полевика не требуется. Выбор второго транзистора не критичен, я взял биполярник MJE13003, но выбор за вами. Шесть резисторов по 0.1 ому, подключены параллельно задают сопротивление шунта, которым подбирается ток защиты. При таком раскладе ток защиты срабатывает при нагрузке в 6 или 7 ампер. Также можно подстроить ток срабатывания переменным резистором.

Выходной ток БП доходит до 7 ампер, довольно прилично. Резисторы для шунта брал на 5 ватт, но подойдут и по 2-3 ватта.

Теперь нужно переделать чтобы выходное напряжение было 14 вольт вместо 10-12.

Это делается просто на вторичную обмотку доматываем всего 3 витка и этим повышаем напряжение на три вольта. Сердечник сам разбирать не обязательно. Провод брал сечением 1 мм и подключаем, вернее припаиваем нашу обмотку одним концом к заводской, а другой конец получается выходом. (то есть последовательно)

Теперь приступим к выпрямителю.

Диоды взял шоттки, выпаял из БП от компьютера. Нужны три одинаковые сборки. Обязательно диоды должны быть импульсные или ультрафасты и не менее 10 ампер. Подойдут и наши типа КД213 и подобные.

Собираем мост, блоки в кучу и включаем в сеть 220, чтобы схема не сгорела (в случаи если что накосячили) её следует подключить через обыкновенную лампочку на 60-100 ватт, которую соединяем последовательно с нашей схемой.

При правильной сборке блок работает сразу, теперь замыкаем выход на нём, при этом загорается светодиод (свидетельствует о коротком замыкании).

Теперь собираем схему индикатора

Сама схема взята от зарядника аккумуляторной отвёртки. Где зелёный огонёк показывает, что идёт заряд, а красный показывает, что есть напряжение на выходе блок питания.

Зелёный индикатор будет затухать постепенно и после 12.4 вольт он окончательно потухнет.

Сетевой фильтр

Но вот и осталось нам только сделать сетевой фильтр, он у нас будет состоять из 2-х плёночных конденсаторов и дросселя.

Коденсаторы подключаются перед дросселем и после. Дроссель можно взять готовый от ИБП или намотать самому. Берём кольцо и мотаем две отдельные обмотки, по 20 витков проводом 0.5 мм. Конденсаторы по 0,47 мкФ 250 или 400 вольт, лучше взять плёночные.Теперь собираем всё в корпус и наслаждаемся полноценным импульсным зарядным устройством. Если будет желание, можно сделать и регулятор мощности.

В устройстве можно применить и более мощные трансформаторы. Практика показала надёжность данного устройства и его простоту в изготовлении. Автор; АКА Касьян

Основные схемы импульсных сетевых адаптеров для зарядки телефонов

Схемы импульсных сетевых адаптеров для зарядки телефонов

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Читать еще:  Стоп сигнал для мотоцикла

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает. То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15. 25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250. 350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10. 20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: