92 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Угловая скорость переменного тока

Содержание

Переменный электрический ток

Переменный ток – или AC (Alternating Current). Обозначение (

Электрический ток называется переменным, если он в течение времени меняет свое направление и непрерывно изменяется по величине.

Переменный ток, который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:

i = Imsin(2πft)

График переменного тока

  • i – мгновенное значение тока
  • Im – амплитудное или наибольшее значение тока
  • f – значение частоты переменного тока
  • t – время

Широко используется переменный ток благодаря тому, что электроэнергия переменного тока технически просто и экономно может быть преобразована из энергии более низкого напряжения в энергию более высокого напряжения и наоборот. Это свойство переменного тока позволяет передавать электроэнергию по проводам на большие расстояния.

Период переменного тока

Промышленный переменный электрический ток получают при помощи электрических генераторов, принцип работы которых основан на законе электромагнитной индукции. Вращение генератора осуществляется механическим двигателем, использующим тепловую, гидравлическую или атомную энергию.

Переменный однофазный электрический ток имеет следующие основные характеристики:

f – частота переменного тока определяет количество циклов или периодов в единицу времени. За единицу измерения частоты переменного тока принят Герц ( Гц ):

1гц = 10 3 кгц = 10 6 мгц

Τ – период – время одного полного изменения переменной величины.

Если в 1 секунду происходит 1 период Τ , то частота f = 1 Гц ( Герц ).

1c = 10 3 мс = 10 6 мкс = 10 12 нс

В Российской Федерации период Τ переменного тока принят равным 0,02 секунды,следовательно по формуле f = 1/Τ можно определить частоту переменного тока:

ω – угловая скорость

Помимо частоты f при изучении цепей переменного тока вводится понятие угловой скорости ω. Угловая скорость ω связана с частотой f следующим соотношением:

При частоте 50 Гц угловая скорость равна 314 рад/с ( 2 × 3,14 × 50 = 314 ).

Мгновенное значение ( i,u,e,p ) – значение величины в данный момент, мгновенное.

Максимальное или амплитудное значение ( Im,Um,Em,Pm ).

Эффективное значение тока – это величина переменного тока, равная такому току, который на сопротивлении R , создаёт тепловыделение равное данному переменному току, за тоже время t ( I,U,E,P ).

Получение синусоидальной кривой

В системе декартовых прямоугольных координат совмещены тригонометрический круг и кривая, отражающая изменение величины тригонометрической функции sinβ от величины угла β между осью 0х и радиусом-вектором r . Радиус-вектор r вращается против часовой стрелки. Повернем радиус-вектор на угол β и от конца вектора r проведем пунктиром прямую, параллельную оси 0х . От окружности (точка а ) по оси 0х отложим в масштабе отрезок. Из конца отрезка построим перпендикуляр до пересечения с пунктирной прямой. Получим точку с в пересечении перпендикуляра и пунктирной прямой.

Синусоида переменного тока

Аналогичное построение проведем, увеличивая угол β , пока радиус-вектор повернется на угол β = 360° , и получим точки аналогично точке с . Соединим точки плавной кривой, которая и будет отражать синусоидальный закон изменения величины переменного тока.

Понятие о фазе

Если две переменные величины одновременно проходят свои нулевые и максимальные значения, то они совпадают по фазе.

Если две переменные величины не одновременно проходят свои нулевые и максимальные значения, то они не совпадают по фазе.

В радиотехнике используются понятия:

1. Активное сопротивление ( Ra )

2. Индуктивное сопротивление ( XL – реактивное сопротивление )

3. Ёмкостное сопротивление ( XC – реактивное сопротивление )

Понятие об активном сопротивлении

Если по проводнику протекает ток, то вследствие явления самоиндукции, электроны распространяются не равномерно по сечению проводника, вследствие чего растёт сопротивление проводника.

Явление неравномерного распространения зарядов по сечению проводника называется – поверхностный эффект. Чем больше частота, тем больше сопротивление.

Период, частота, амплитуда и фаза переменного тока

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Читать еще:  Как проверить масло в акпп ix35

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Амплитуда переменного тока

Наибольшее значение, которого достигает ЭДС или сила тока за один период, называется амплитудой ЭДС или силы переменного тока. Легко заметить, что амплитуда в масштабе равна длине радиуса-вектора. Амплитуды тока, ЭДС и напряжения обозначаются соответственно бук­вами Im, Em и Um (рисунок 1).

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Частота электрического тока — определение, физический смысл

Переменный ток имеет ряд важных характеристик, влияющих на его физические свойства. Одним из таких параметров является частота переменного тока. Если говорить с точки зрения физики, то частота – это некая величина, обратная периоду колебания тока. Если проще – то это количество полных циклов изменения ЭДС, произошедших за одну секунду.

Известно, что переменный ток заставляет электроны двигаться в проводнике сначала в одну сторону, потом — в обратную. Полный путь «туда-обратно» они совершают за некий промежуток времени, называемый периодом переменного тока. частота же является количеством таких колебаний за 1 секунду. В качестве единицы измерения частоты во всем мире принят 1 Гц (в честь немецкого ученого Г.Герца), который соответствует 1 периоду колебания за 1 секунду.

В республиках бывшего СССР стандартной считается частота тока в 50 Гц.

Это значит, что синусоида тока движется в течение 1 секунды 50 раз в одном направлении, и 50 — в обратном, 100 раз проходя чрез нулевое значение. Получается, что обычная лама накаливания, включенная в сеть с такой частотой, будет затухать и вспыхивать примерно 100 раз за секунду, однако мы этого не замечаем в силу особенностей своего зрения.

Для измерения частоты переменного тока применяют приборы, называемые частотомерами. Частотомеры используют несколько основных способов измерения, а именно:

• Метод дискретного счета;

• Резонансный метод измерения частот.

• Метод сравнения частот;

Метод дискретного счета основывается на подсчете импульсов необходимой частоты за конкретный промежуток времени. Его наиболее часто используют цифровые частотомеры, и именно благодаря этому простому методу можно получить довольно точные данные.

Более подробно о частоте переменного тока Вы можете узнать из видео:

Метод перезаряда конденсатора тоже не несет в себе сложных вычислений. В этом случае среднее значение силы тока перезаряда пропорционально соотносится с частотой, и измеряется при помощи магнитоэлектрического амперметра. Шкала прибора, в таком случае, градуируется в Герцах.

Погрешность подобных частотомеров находится в пределах 2%, и поэтому такие измерения вполне пригодны для бытового использования.

Резонансный способ измерения базируется на электрическом резонансе, возникающем в контуре с подстраиваемыми элементами. Частота, которую необходимо измерить, определяется по специальной шкале самого механизма подстройки.

Такой метод дает очень низкую погрешность, однако применяется только для частот больше 50 кГц.

Читать еще:  Можно ли добавить спирт в бензин

Метод сравнения частот применяется в осциллографах, и основан на смешении эталонной частоты с измеряемой. При этом возникают биения определенной частоты. Когда же частота этих биений достигает нуля, то измеряемая частота становится равной эталонной. Далее, по полученной на экране фигуре с применением формул можно рассчитать искомую частоту электрического тока.

Ещё одно интересное видео о частоте переменного тока:

Частота тока

Изобретение электричества поставило человечество на новую грань развития. Технический прогресс опирался на два направления движения с использованием электроэнергии. В одном случае применялся постоянный ток, во втором – переменный. Внедрение источников электричества и электропотребителей вылилось в столетнюю войну между приверженцами двух видов энергии. В конце концов, победу одержали те, кто продвигал идею повсеместного использования её переменного вида.

Общее понятие о переменном токе

В отличие от постоянного движения электронов в одном направлении, переменный ток меняет как направление, так и значение несколько раз за единицу времени. Изменения происходят по гармоническому закону. Если наблюдать подобный сигнал с помощью осциллографа, можно увидеть картинку в виде синусоиды.

Относительно оси ординат OY ток меняет своё направление с положительного на отрицательное и делает это периодически. Поэтому его мгновенное значение в первой позиции считается положительным, во второй – отрицательным.

Важно! Так как переменный ток – это алгебраическая величина, то говорить о его знаке заряда можно только для конкретного мгновенного значения, смотря, в каком направлении он протекает в этот момент.

Периодический переменный ток

Тот, который, изменяясь, успевает вернуться к своему исходному значению через одинаковые временные интервалы и при этом проходит весь цикл своих преобразований, называется периодическим. Его можно проследить на синусоиде, изображённой на экране осциллографа.

Видно, что через одинаковые интервалы времени график повторяется без перемен. Эти интервалы обозначаются буквой Т и называются периодами. Частота, с которой в единицу времени укладывается определённое количество подобных периодов, – это частота тока переменного значения.

Её можно вычислить по формуле частоты переменного тока:

где:

Частота равна количеству периодов в секунду и имеет единицу измерения 1 герц (Гц).

Внимание! Единица частоты в системе СИ носит имя Генриха Герца. 1 герц (Гц, Hz) = 1 с-1. К ней применимы кратные и дольные, выраженные стандартными приставками СИ, единицы.

Стандарты частоты

Для того чтобы обеспечить согласование работы источников переменного электричества, систем передач, приём и работу электропотребителей, применяются стандарты частоты. Используемая частота в электротехнике некоторых стран:

  • 50 Гц – страны бывшего СССР, Прибалтики, страны Европы, Австралия, КНДР и другие;
  • 60 Гц – стандарт, принятый в США, Канаде, Доминиканской республике, Тайвани, на Каймановых островах, Кубе, Коста-Рике, Южной Корее и ещё в некоторых странах.

В Японии используются обе частоты. Восточные регионы (Токио, Сендай, Кавасаки) используют частоту 50 Гц. Западные области (Киото, Хиросима, Нагоя, Окинава) применяют частоту 60 Гц.

К сведению. Железнодорожная инфраструктура Австрии, Норвегии, Германии, Швейцарии и Швеции по сей день применяет частоту 16,6 Гц.

Переменный синусоидальный ток

Это тот ток, который периодически меняется во времени, и его изменения подчиняются закону синусоиды. Это элементарное движение электрических зарядов, потому дальнейшему разложению на простые токи оно не подлежит.

Вид формулы такого переменного тока:

где:

  • Im – амплитуда;
  • sinωt – фаза синусоидального тока, рад.

Здесь ω = const, называется угловой частотой переменного электричества, причём угол ωt находится в прямой временной зависимости.

Зная частоту f исходного тока, можно вычислить его угловую частоту, применив выражение:

Тут 2πэто выраженное в радианах значение центрального угла окружности:

  • Т = 2 π радиан = 3600;
  • Т/2 = π = 1800;
  • Т/4 = π/2 = 900.

Если выразить 1 рад в градусах, то он будет равен 57°17′.

Многофазный переменный ток

Для запуска и работы многих промышленных устройств и электрооборудования требуется не одна фаза, а несколько. В связи с этим рассматривают такие понятия, как двухфазный и трёхфазный переменные токи.

Трёхфазный ток

Этот вид электричества применяют в трёхфазной системе, в которую включены три однофазные цепи. Цепи имеют ЭДС переменной природы одной и той же частоты. Эти ЭДС сдвинуты по фазе относительно друг друга на ϕ = Т/3 = 2π/3. Такую систему называют трёхфазным током, а цепь – фазой.

Выработка, преобразование, доставка и потребление переменного электрического тока в основном происходят по трёхфазной системе электроснабжения.

Двухфазный ток

Ещё в 1888 году Никола Тесла выполнил описание того, как можно на практике применить двухфазную сеть, и предложил разработанную им конструкцию двухфазного двигателя. Такие сети начали применять в начале 20 века. Они состояли из двух контуров.

Там напряжения контуров сдвигались по фазе на 900. Каждая фаза включала в себя два провода, у двухфазных генераторов было по два ротора, также конструктивно развёрнутые на угол 900.

Важно! Такие сети позволяли производить мягкий пуск двухфазных электродвигателей, практически с нулевого момента вращения. В то время как для запуска однофазного асинхронного двигателя требуется дополнительная пусковая обмотка или система запуска.

Действующее значение синусоидального тока

Под действующим значением понимают его эффективность. Она равна такому значению постоянного тока, который выполнит ту же работу, что и переменный, за один период времени. Под работой здесь подразумевают его тепловую или электродинамическую направленность. Удобнее всего использовать среднеквадратичное значение переменного электричества.

Тогда действующее значение для синусоидального тока определяют по формуле:

I = * Im ≈ 0,707* Im,

где Im – величина амплитуды тока.

Генерирование переменного тока

Кроме стандартных генераторов, для производства переменного тока применяются инверторы и фазорасщепители.

Инвертор

Это устройство, с помощью которого из постоянного тока получают его переменный вид. В процессе этого величина выходного напряжения тоже меняется. Схема устройства представляет собой электронный генератор синусоидального импульсного напряжения периодического характера. Есть варианты инверторов, работающих с дискретным сигналом. Инверторы применяют для автономного питания оборудования от аккумуляторов постоянного напряжения.

Читать еще:  Центральный замок на газель бизнес

Фазорасщепитель

Ещё один способ получить несколько фаз из какого-либо сигнала – это выполнить его расщепление на несколько фаз. Это делается с помощью фазорасщепителя. Принудительная обработка сигналов цифрового или аналогового формата используется, как в радиоэлектронике, так и в силовой электротехнике.

Для электроснабжения трёхфазных асинхронных двигателей применяют выполненный на их же базе фазорасщепитель. Для этого обмотки трёхфазного двигателя соединяют не «звездой», а иначе. Две катушки присоединяют между собой последовательно, третью – подключают к средней точке второй обмотки. Двигатель запускают, как однофазный, после разгона в его третьей обмотке наводится ЭДС.

Интересно. В случае расщепления фаз подобным методом сдвиг фаз между 2 и 3 обмоткой составляет не 1200, как должно быть в идеале, а 900.

Сети переменного тока

По назначению и применению эти сети можно классифицировать следующим образом:

  • общие системы: питание объектов промышленного, транспортного, сельскохозяйственного и бытового назначения;
  • автономные сети: снабжение передвижных и стационарных автономных субъектов.

Общие сети переменного трёхфазного тока построены по четырёхпроводной схеме, где три провода – это «фаза», четвёртый – «ноль». Трансформаторные подстанции построены по схеме с глухо заземлённой нейтралью. Передача на дальние расстояния производится при высоком напряжении, которое затем понижается на подстанциях до напряжения 0,4 кВ и раздаётся потребителям.

Бытовые объекты подключаются по однофазной схеме. В этом случае требуются два провода: «фазный» и «нулевой».

Определение частоты и периода

Частота электрического тока – это величина физическая, она определяет количество колебаний за 1 секунду. Время, за которое происходит одно целое колебание, называется периодом.

Взаимосвязь частоты и работы электрооборудования

Частота тока – это один из параметров электроэнергии, который влияет на стабильную работу электроустановок и оборудования. При поставке энергии потребителю этот параметр строго контролируется, так же, как и напряжение.

Нить взаимосвязи выражается формулой номинального количества оборотов в минуту для вращающихся машин. КПД (коэффициент полезного действия) заложен в самой конструкции агрегатов. Он максимален при:

где:

  • n – количество об./мин.;
  • f – частота;
  • p – количество пар полюсов.

Количество оборотов турбины генераторов напрямую связано с частотой вырабатываемого переменного тока, полученная частота отвечает за оптимальный режим вращения электродвигателя потребителя. При снижении частоты в сети обороты машины снижаются автоматически. Происходит перегрузка на валу, и страдает двигатель.

В то же время технологическая линия, в которую он передаёт энергию вращения, также терпит изменения в работе:

  • изменяется скорость движения конвейера, что влечёт за собой сбой технологического процесса и брак в итоге;
  • снижаются мощность и частота вращения насосов, вентиляторов, что приводит к нестабильной работе систем, в которых они установлены;
  • снижение частоты в энергосистеме на 1% приводит к падению общей мощности на нагрузке до 2%.

Для контроля этого важного электрического параметра применяют частотомеры.

Внимание! Снижение частоты на 10-15% вызывает падение производительности механизмов даже на самой электростанции до нуля. При частоте тока в сети 50 Гц (критической величиной являются 45 Гц) происходит лавинный спад.

Частотомер

Это прибор, предназначенный для измерения частоты и отображения полученного результата на экран. Для контроля в электросетях применяют приборы непосредственной оценки синусоидальных колебаний аналоговой конструкции.

Различают по методу установки:

Частотомеры в современном исполнении имеют цифровое отображение результатов на электронном дисплее.

Токи высокой частоты

ТВЧ – такова их аббревиатура, используются для плавки металлов, закалки поверхности металлических изделий. ТВЧ – это токи, имеющие частоту более 10 кГц. В индукционных печах используют ТВЧ, помещая проводник внутрь обмотки, через которую пропускают ТВЧ. Под их воздействием возникающие в проводнике вихревые токи разогревают его. Регулируя силу ТВЧ, контролируют температуру и скорость нагрева.

Интересно. Расплавляемый металл может быть подвешен в вакууме с помощью магнитного поля. Для него не нужен тигель (специальный ковш для нагрева). Так получают очень чистые вещества.

Плюсы использования ТВЧ в разных случаях:

  • быстрый нагрев при ковке и прокате металла;
  • оптимальный температурный режим для пайки или сварки деталей;
  • расплав даже очень тугоплавких сплавов;
  • приготовление пищи в микроволновых печах;
  • дарсонвализация в медицине.

Получают ТВЧ с помощью установок, включающих в свой состав колебательный контур, или электромашинных генераторов. У статора и ротора генераторов на сторонах, обращённых друг другу, нанесены зубцы. Их взаимное движение порождает пульсацию магнитного поля. Частота на выходе тем больше, чем больше произведение числа зубцов ротора на частоту его вращения.

Период пульсаций и частота

Частота переменного тока может иметь другое название – пульсация. Периодом пульсации называют время единичной пульсации.

Интенсивность циклов

Для электросети с частотой 50 Гц период пульсации составит:

При необходимости, зная эту зависимость, можно по времени цикла вычислить частоту.

Опасность разночастотных зарядов

Как постоянный, так и переменный ток при определённых значениях представляет опасность для человека. До 500 В разница в безопасности находится в соотношении 1:3 (42 В постоянного к 120 В переменного).

При значениях выше 500 В это соотношение выравнивается, причём константное электричество вызывает ожоги и электролизацию кожных покровов, изменяющееся – судороги, фибрилляцию и смерть. Тут уже частота пульсации имеет большое значение. Самый опасный интервал частот – от 40 до 60 Гц. Далее с повышением частоты риск поражения уменьшается.

Частота переменного электричества – важный параметр. Она влияет не только на работу электроустановок потребителей, но и на человеческий организм. Изменяя частоту электрических колебаний, можно менять технологические процессы на производстве и качество вырабатываемой энергии.

Видео

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector