62 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ваз 2110 система впрыска топлива

Ваз 2110 система впрыска топлива

Работа системы впрыска ВАЗ 2110.

Система впрыска топлива ВАЗ 2110.

Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от контроллера (электронного блока управления). Контроллер отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, для уменьшения подачи топлива – сокращается.

Контроллер обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» контроллера является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Топливо подается по одному из двух разных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива – наиболее часто применяемый метод. Асинхронный впрыск топлива применяется в основном на режиме пуска двигателя.

Форсунки включаются попарно и поочередно: сначала форсунки 1-го и 4-го цилиндров, а через 180° поворота коленчатого вала – форсунки 2-го и 3-го цилиндров и т.д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т.е. два раза за полный рабочий цикл двигателя.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются контроллером и описаны ниже.

Первоначальный впрыск топлива. Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от контроллера на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.

Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается для увеличения количества топлива, а на прогретом – длительность импульса уменьшается. После первоначального впрыска контроллер переключается на соответствующий режим управления форсунками.

Режим пуска двигателя. При включении зажигания контроллер включает реле электробензонасоса, который создает давление в магистрали подачи топлива к топливной рампе. Контроллер проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздуха и топлива для пуска.

Режим обогащения при ускорении. Контроллер следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха, обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).

Режим отключения подачи топлива при торможении двигателем. При торможении двигателем с включенной передачей и сцеплением контроллер может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.

Компенсация напряжения питания. При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. Контроллер компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.

Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) контроллер уменьшает время накопления энергии в катушках зажигания и длительность впрыска.

Режим отключения подачи топлива. При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если контроллер не получает опорных импульсов от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.

Для защиты двигателя от перекрутки отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 мин”1.

Если вам понравилось?! Поделитесь с другом и подругой или плюсик от души. Человеческое вам спасибо, друзья.
(Соц. сети подключены в августе 2013 г.)

Система впрыска топлива

Расположение элементов системы управления двигателем в подкапотном пространстве (двигатель мод. 2111)

ВНИМАНИЕ !

1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «минус» аккумуляторной батареи.

2. Не пускайте двигатель, если наконечники проводов на аккумуляторной батарее плохо затянуты.

Читать еще:  Замена помпы ваз 2121

Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.

4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети автомобиля.

5. Не подвергайте контроллер температуре выше 65°С в рабочем состоянии и выше 80°С – в нерабочем (например, в сушильной камере). Надо снимать контроллер с автомобиля, если эта температура будет превышена.

6. Не отсоединяйте от контроллера и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.

7. Перед выполнением электродуговой сварки на автомобиле отсоединяйте провода от аккумуляторной батареи и разъемы проводов от контроллера.

8. Все измерения напряжения выполняйте цифровым вольтметром с внутренним сопротивлением не менее 10 МОм.

9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому легко могут быть повреждены электростатическим разрядом. Чтобы не допустить повреждений контроллера электростатическим разрядом:

– не прикасайтесь руками к штекерам контроллера или к электронным компонентам на его платах;

– при работе с ППЗУ контроллера не дотрагивайтесь до выводов микросхемы.

На автомобилях ВАЗ–2110, –2111 и –2112 в вариантном исполнении применяется электронная система управления двигателем, т.е. система распределенного впрыска топлива. Эта система применяется на двигателях 2111 и 2112. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля.

Существуют системы распределенного впрыска с обратной связью и без нее. Причем обе системы могут быть с импортными или отечественными комплектующими. Контроллеры (электронные блоки управления) тоже могут устанавливаться разных типов. Все эти системы имеют свои особенности в устройстве, диагностике и ремонте, которые подробно описаны в соответствующих отдельных Руководствах по ремонту конкретных систем впрыска топлива с определенным контроллером.

В настоящей главе дается только краткое описание общих принципов устройства, работы и диагностики систем впрыска топлива на примере системы с контроллером «Январь–4».

Система с обратной связью применяется в основном на экспортных автомобилях. У нее в системе выпуска устанавливается нейтрализатор и датчик кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а контроллер по его сигналам поддерживает такое соотношение воздух/топливо, которое обеспечивает наиболее эффективную работу нейтрализатора.

В системе впрыска без обратной связи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяется также система улавливания паров бензина. Возможен вариант системы впрыска и без СО-потенциометра, тогда содержание СО регулируется с помощью диагностического прибора.

Существует еще система последовательного распределенного впрыска топлива или фазированного впрыска. Она применяется с двигателем 2112. Здесь дополнительно устанавливается датчик фаз, определяющий момент конца такта сжатия в 1-м цилиндре, а топливо подается форсунками по цилиндрам в последовательности, соответствующей порядку зажигания в цилиндрах (1–3–4–2).

ВАЗ 2110 инжектор двигатель, схема и принципы работы инжекторного двигателя “десятки”

ВАЗ 2110 инжектор двигатель который отличается экономичностью, повышенной мощностью и стабильностью работы, если сравнивать его с карбюраторными двигателями ВАЗ 2110. Широкое применение инжекторных моторов на “Автовазе началось в 2000-ых годах. Сегодня мы подробно расскажем как работает инжекторный двигатель “десятки”.

Стоит напомнить, что инжекторные моторы на “десятку” устанавливали разные по объему и количеству клапанов. Сегодня на вторичном рынке можно встретить инжекторные ВАЗ 2110 с 8-ми и 16-клапанными силовыми агрегатами рабочим объемом, как 1.5, так и 1.6 литра.

ВАЗ 2110 инжектор двигатель, схема работы

Силовые агрегаты с инжектором отличаются от карбюраторных версий принципом подачи топлива в камеру сгорания бензинового двигателя. Если карбюраторному двигателю необходимо “всасывать” топливо из камер карбюратора, то в инжекторном варианте топливо впрыскивается под давлением посредством форсунок. Это на много экономичнее, поскольку электромагнитные клапана форсунок пропускают только необходимое количество топлива и не каплей больше. За этим чутко следит электроника, которая дает команды пользуясь информацией от различных датчиков, после анализа всех данных подается необходимый импульс в форсунку и она снабжает топливом двигатель. При этом весь процесс происходит практически мгновенно. Далее подробная схема работы ВАЗ 2110 инжектор двигатель.

  • 1 – реле зажигания
  • 2 – аккумуляторная батарея
  • 3 – выключатель зажигания
  • 4 – нейтрализатор
  • 5 – датчик концентрации кислорода
  • 6 – форсунка
  • 7 – топливная рампа
  • 8 – регулятор давления топлива
  • 9 – регулятор холостого хода
  • 10 – воздушный фильтр
  • 11 – колодка диагностики
  • 12 – датчик массового расхода воздуха
  • 13 – тахометр
  • 14 – датчик положения дроссельной заслонки
  • 15 – контрольная лампа «CHECK ENGINE»
  • 16 – дроссельный узел
  • 17 – блок управления иммобилайзером
  • 18 – модуль зажигания
  • 19 – датчик температуры охлаждающей жидкости
  • 20 – контроллер
  • 21 – свеча зажигания
  • 22 – датчик детонации
  • 23 – топливный фильтр
  • 24 – реле включения вентилятора
  • 25 – электровентилятор системы охлаждения
  • 26 – реле включения электробензонасоса
  • 27 – топливный бак
  • 28 – электробензонасос с датчиком указателя уровня топлива
  • 29 – сепаратор паров бензина
  • 30 – гравитационный клапан
  • 31 – предохранительный клапан
  • 32 – датчик скорости
  • 33 – датчик положения коленчатого вала
  • 34 – двухходовой клапан
Читать еще:  Ваз 21124 плохо набирает обороты

Важнейшим элементом системы питания инжекторного мотора “десятки” является электрический бензонасос, который расположен в баке, именно он постоянно обеспечивает необходимое давление в рампе с форсунками, через которые топлива подается во впускные коллекторы. Работает бензонасос в ВАЗ 2110 инжектор довольно шумно. Достаточно вставить ключ зажигания и повернуть его, как в салоне автомобиля послышится характерное “жужжание” электро бензонаноса. Если вы не слышите жужжания, перед пуском двигателя, а мотор при этом еще не заводится, значит бензонанос неисправен. А следовательно завести инжекторный двигатель с “толкача” не получится, ведь давления в рампе и форсунках все равно нет, значит и топливо не будет подаваться.

Ремонт и обслуживание инжекторных моторов требует специального диагностического оборудования. На ВАЗ 2110 устанавливались в основном инжекторные двигатели рабочим объемом 1.5 и 1.6 литра, как 8-ми, так и 16 клапанные версии. Далее приведем краткие характеристики этих моторов в таблице ниже.

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

ДИАГНОСТИКА: параметры впрыска ВАЗ-2110. Допрос с пристрастием

При всей привлекательности автомобильных технологий середины ХХ века отказ от них закономерен. Обязательными для России стали, наконец, требования Евро II, за ними неизбежно последуют Евро III, потом Евро IV. В сущности, каждому сознательному автомобилисту предстоит радикально изменить собственное мировоззрение, сделав его основой не «гоночные» амбиции, культивировавшиеся целое столетие, а бережное отношение к цивилизации. Количество и состав выбросов автомобильного двигателя теперь ограничивают чрезвычайно жесткими рамками — хотя бы и при некоторой потере динамических показателей.

Добиться выполнения таких требований сумеем, только подняв уровень сервиса. Конечно, автолюбителям, не утратившим любознательности, «лишние» знания тоже не повредят. Хотя бы в прикладном смысле: грамотный человек меньше рискует быть обманутым недобросовестными мастерами, а это всегда актуально.

Итак, к делу. Сегодня автомобили ВАЗ выпускаются с контроллером Bosch M7.9.7. В сочетании с дополнительным датчиком кислорода в выхлопных газах и датчиком неровной дороги это обеспечивает выполнение норм Евро III и Евро IV. Конечно, теперь увеличилось количество контролируемых параметров. Вот о них и расскажем, предполагая, что мы, вы или диагност из сервиса вооружены сканером — например, ДСТ-10 (ДСТ-2).

Начнем с датчиков температуры: их два. Первый — на отводящем патрубке системы охлаждения (фото 1). По его показаниям контроллер оценивает температуру жидкости перед пуском двигателя — TMST (°С), ее значения при прогреве — ТМОТ (°С). Второй датчик измеряет температуру воздуха, поступающего в цилиндры, — TANS (°С). Он установлен в корпусе датчика массового расхода воздуха. (Здесь и далее выделенные сокращения те же, что в официальных руководствах по ремонту.)

Надо ли долго объяснять роль этих датчиков? Представьте, что контроллер обманут заниженными показаниями ТМОТ, а двигатель на самом деле уже прогрет. Начнутся проблемы! Контроллер будет увеличивать время открытия форсунок, пытаясь обогатить смесь — результат тут же обнаружит датчик кислорода и «настучит» контроллеру об ошибке. Контроллер попытается ее исправить, но тут снова вмешивается неверная температура…

Величина TMST перед запуском, помимо прочего, важна для оценки работы термостата по времени прогрева двигателя. К слову сказать, если автомобилем долго не пользовались, то есть температура двигателя сравнялась с температурой воздуха (с учетом условий хранения!), очень полезно сопоставить показания обоих датчиков перед пуском. Они должны быть одинаковы (допуск ±2°С).

Читать еще:  Ротор генератора ваз 2110

А что будет, если отключить оба датчика? После пуска величину ТМОТ контроллер рассчитывает согласно алгоритму, заложенному в программу. А величину TANS принимает равной 33°С для 8-клапанного двигателя 1,6 л и 20°С для 16-клапанного. Очевидно, что исправность этого датчика очень важна при холодном пуске, особенно в мороз.

Следующий важный параметр — напряжение в бортовой сети UB. В зависимости от типа генератора оно может лежать в пределах 13,0- 15,8 В. Контроллер получает питание +12 В тремя путями: от АКБ, замка зажигания и главного реле. С последнего он вычисляет напряжение в системе управления и при необходимости (в случае понижения напряжения в сети) увеличивает время накопления энергии в катушках зажигания и длительность импульсов впрыска топлива.

Значение текущей скорости автомобиля выводится на дисплей сканера в виде VFZG. Оценивает ее датчик скорости (на коробке передач — фото 2) по частоте вращения корпуса дифференциала (погрешность не более ±2%) и сообщает контроллеру. Конечно, эта скорость должна практически совпасть с той, что показывает спидометр — ведь тросовый его привод остался в прошлом.

Если минимальные обороты холостого хода у прогретого двигателя выше нормы, проверим степень открытия дроссельной заслонки WDKBA, выраженную в процентах. В закрытом положении (фото 3) — ноль, у полностью открытой — от 70 до 86%. Нужно иметь в виду, что это относительная величина, связанная с датчиком положения заслонки, а не угол в градусах! (На устаревших моделях полному открытию дросселя соответствовали 100%.) На практике, если показатель WDKBA не ниже 70%, регулировать механику привода, что-то отгибать и т.п. нет необходимости.

При закрытом дросселе контроллер запоминает величину напряжения, поступающего с ДПДЗ (0,3–0,7 В), и хранит в энергозависимой памяти. Это полезно знать, если вы самостоятельно меняете датчик. В этом случае надо снять клемму с АКБ. (В сервисе для инициализации пользуются диагностическим прибором.) В противном случае измененный сигнал с нового ДПДЗ может обмануть контроллер — и обороты холостого хода не будут соответствовать норме.

Вообще же частоту вращения коленвала контроллер определяет с некоторой дискретностью. До 2500 об/мин точность измерений — 10 об/мин — NMOTLL, а весь диапазон — от минимума до срабатывания ограничителя — оценивает параметр NMOT с дискретностью 40 об/мин. Для оценки состояния двигателя более высокая точность в этом диапазоне не требуется.

Практически все параметры двигателя так или иначе связаны с расходом воздуха в его цилиндрах, контролируемым с помощью датчика массового расхода воздуха (ДМРВ — фото 4). Этот показатель, выраженный в килограммах в час (кг/ч), обозначается как ML. Пример: новый необкатанный 8-клапанный двигатель 1,6 л в прогретом состоянии на режиме холостого хода расходует 9,5- 13 кг воздуха в час. По мере приработки с уменьшением потерь на трение этот показатель существенно снижается — на 1,3- 2 кг/ч. Пропорционально меньше и расход бензина. Конечно, сопротивление вращению водяного и масляного насосов и генератора тоже сказывается, при эксплуатации несколько влияя на расход воздуха. В то же время контроллер рассчитывает и теоретическую величину расхода воздуха MSNLLSS для конкретных условий — частота вращения коленвала, температура охлаждающей жидкости. Это тот поток воздуха, который должен поступать в цилиндры через канал холостого хода. В исправном двигателе ML немного больше, чем MSNLLSS, — на величину перетечек через зазоры дросселя. А у неисправного двигателя, разумеется, возможны ситуации, когда расчетный расход воздуха больше фактического.

Углом опережения зажигания, его корректировками тоже заведует контроллер. Все характеристики хранятся в его памяти. Для каждых условий работы двигателя контроллер подбирает оптимальный УОЗ, который можно проверить — ZWOUT (в градусах). Обнаружив детонацию, контроллер уменьшит УОЗ — величина такого «отскока» выводится на дисплей сканера в виде параметра WKR_X (в градусах).

…Для чего системе впрыска, в первую очередь контроллеру, знать такие подробности? Надеемся ответить на этот вопрос в следующей беседе — после того как рассмотрим и другие особенности работы современного впрыскового мотора.

голоса
Рейтинг статьи
Ссылка на основную публикацию
Статьи c упоминанием слов: